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Executive Summary 

The purpose of this research is to develop a better understanding of human behavior when 
using the types of decision-support tools (DSTs) planned for the Traffic Flow Management (TFM) 
domain and other applicable air traffic control domains. These DSTs provide users with 
recommended solutions and methods to assess different options (i.e., “what-if” modeling capabilities) 
that allow users to evaluate the likely outcomes of different potential actions. This study used a part-
task design to assess DST used by non-TFM personnel. We designed a task that could be quickly 
learned by novices, and we focused on several key aspects of the types of tasks performed by TFM 
personnel. To study DSTs, we focused on four experimental variables that likely impact DST use: 
situation-specific training, DST reliability, the number of recommendations made by the DST, and 
overall task workload. 

The central task was inspired by the Integrated Departure Route Planning tool (DeLaura et 
al., 2012; Davison Reynolds & DeLaura, 2011) and involved rerouting aircraft around severe weather. 
The task involved assessing how multiple factors impact the aircraft and airspace. These factors 
included weather, aircraft congestion in the airspace under the participant’s control, aircraft congestion 
in airspace under the neighboring center’s control, and flight delay time. We assigned each factor a 
score to provide a numerical measurement of behavior. We weighted the factors to represent the 
relative importance of each parameter in the real world, as determined by the researchers (based on 
our knowledge of TFM) and by the TFM subject matter experts (SMEs). The participant’s task was 
to select the highest scoring reroute. Participants made their rerouting decision based on information 
about each route using “what-if” modeling capabilities. In addition, we administered several 
questionnaires throughout the study to assess the participant’s subjective attitudes and opinions about 
the DST. 

The DST we developed for this task recommended one or more routes as a high-scoring 
route. We manipulated two key aspects of the DST: its reliability and the number of recommendations 
it made. This allowed us to assess how the experimental variables would impact DST use. 

The participants also performed two secondary tasks designed to be similar to the types of 
tasks performed by traffic managers: an airspace monitoring task and a National Traffic Management 
Log communication task. These tasks allowed us to manipulate the workload of the participants so 
we could study the impact of high-workload environments on DST use. We also restricted the amount 
of time participants had to complete their tasks to create a realistic and busy situation. 

Every participant underwent interactive training on how to perform the task and how to find 
and select optimal routes. They also completed several practice scenarios. Half of the participants 
received additional situation-specific training regarding the details of how the DST was developed and 
how it generated its recommendations. We were able to compare the participants who received the 
extra training with those who did not to see how such training impacted DST use. 

Some of the experimental variables directly impacted task performance and survey measures. 
Several of the experimental variables interacted in meaningful ways that illustrate the complex nature 
of DST use, and provide insights and recommendations for DST development and deployment. 

Both DST reliability and task workload had direct effects on performance. More reliable 
DSTs increased task performance. Higher workloads decreased performance and increased the 
participants’ reliance on the DST. These two variables interacted, indicating that low-reliability had 
little impact on performance when task load was low. When the route recommendations provided by 
the automation were not optimal, there was an increase in the need to evaluate alternative routes. 
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When workload was low, the participants had the necessary time and cognitive resources to do that 
evaluation and overcome the poorer performance of the DST. When time and workload reduced the 
participant’s ability to evaluate their options and rely on the automation, a poor performing DST had 
a negative impact on performance. 

The extra situation-specific training we gave half the participants did not increase 
performance in the scenarios with no DST. However, it did change the way the participants performed 
the tasks in scenarios with the DST. Situation-specific training and task workload had an interactive 
effect on performance. When workload was low, the trained and untrained groups performed 
similarly. Having more information regarding how the DST arrived at decisions was not as helpful in 
situations in which the participants had time to consider alternative options. The training let the 
participants know the situations in which the DST could be trusted and was beneficial to performance 
in high-workload situations. We conclude that low workload allowed the participants the opportunity 
to evaluate their options so the extra training did not increase performance. But when workload was 
high, the additional training allowed the participants to make better use of the DST and outperform 
the untrained group. 

Workload is relevant to DST use in operational environments. Situations in which DSTs 
would be most useful are inherently busy, such as those that require traffic reroutes. In our study, 
DST reliability became an important consideration, and the additional situation-specific training 
helped improve performance. Additional research is needed to know more precisely the levels of these 
experimental variables that would most impact performance in operational settings. Our study used 
only two levels of reliability and workload: low and high. It is unknown how reliable a DST needs to 
be, only that it is an important consideration. The workload of potential users should be considered 
during evaluation of DSTs. 

In our study, simple additional training had an impact on DST use and task performance. 
However, the complexities of training leave room for future research. These include topics about the 
types of information covered by the training and issues surrounding how training is administered. We 
hope future research provides an opportunity to explore these topics in more depth. 

We conducted this study with novices. Next, it will be important to conduct a similar study 
with TFM personnel with a range of experience levels to determine whether the same results are 
found. It is likely that experienced TFM personnel and less experienced TFM personnel differ from 
one another in how they make use of the DST and the type of training that is most effective. DST 
training for more experienced users may need to be targeted more specifically to help them determine 
where benefits from the automation can be gained (e.g., by providing information as to when the tool 
provides a faster resolution, or identifying and providing solutions to situations that these users 
encounter less frequently). 

In conclusion, we set out to evaluate DST use in an environment that emulated many of the 
demands in TFM. We designed a task that could be quickly learned and performed by non-TFM 
personnel that was similar to actual TFM responsibilities. We found that DST reliability and task 
workload played important roles in task performance. The interaction of these two experimental 
variables, as well as the amount and type of training provided, highlights a need to consider these 
issues when designing, developing, deploying, and evaluating DSTs in the operational environment.
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1. INTRODUCTION 

The purpose of this research is to investigate how users employ new decision-support tools 
(DSTs) planned for the Traffic Flow Management (TFM) domain and other applicable air traffic 
control (ATC) domains. These DSTs recommend solutions and methods to assess different options 
(i.e., “what-if” modeling capabilities) that allow users to evaluate the likely outcomes of different 
potential actions. 

The decisions made by TFM personnel—Traffic Management Coordinators (TMCs) in Air 
Route Traffic Control Centers (ARTCCs), Terminal Radar Approach Control (TRACON) facilities 
and air traffic control towers (ATCTs), and Traffic Management Specialists (TMS) at the Air Traffic 
Control System Command Center (ATCSCC)—are complex and involve multiple factors that affect 
cognitive workload. DSTs are intended to reduce the cognitive workload of users in these domains. 
However, various factors must be considered in implementing the tools to ensure that they bring their 
expected benefits. These factors include tool design and user training. 

This report summarizes a part-task study examining how DSTs affect performance of novice, 
non-operational personnel on an aircraft departure rerouting task. We based the part-task study on 
information obtained from a literature review that we summarized in an annotated bibliography 
(Masalonis, Zingale, & Puzen, 2016) and on our review of air traffic management (ATM) tools and 
concepts that are expected to be implemented in the NextGen timeframe or that have been researched 
for possible implementation (Masalonis, Zingale, Puzen, Thomas, & Yuditsky, 2016). 

DSTs are typically not 100% accurate or reliable because they base decisions on probabilistic 
information, such as weather predictions. Research has shown, however, that the tool does not need 
to be perfect to be useful. For example, “imperfect” alerts, as long as they are at least  
70-75% accurate, are useful when workload levels and task demands are high (Dixon & Wickens, 
2006). Sorkin, Kantowitz, and Kantowitz (1988) reported that the use of the alerts improves when 
users see information about the likelihood of an event (e.g., “possible signal,” “likely signal,” or 
“urgent signal”) because the likelihood information helps the user better assess the situation to make 
the appropriate decision. Therefore, instructing users as to the reliability or accuracy of the tool 
recommendations is an important factor in evaluating DST usefulness. 

Although qualitative DST reliability information has been shown to be useful, presenting 
quantitative information about the tool’s reliability has not. Wiegmann (2002), in a laboratory study of 
variable-reliability automation, found that some participants used a strategy of agreeing with the 
automated recommendations at a rate approximately equal to the tool’s purported reliability  
(e.g., 80%). This misunderstanding of probability led to poor performance; if participants attempted 
to agree with the automation on 80% of trials, they failed to understand that this strategy was likely to 
result in overall performance well below 80%. The participants could only be 80% correct if they 
agreed with the DST on the “right” trials. To achieve a performance level of 80%, the participants 
should rely on the automation all the time. Although this result is counterintuitive, presenting more 
precise, quantitative reliability information may lead to a reduction in DST usefulness and task 
performance. These findings led us to include qualitative DST reliability information rather than 
quantitative information in our study. 

The usefulness of DST information also depends upon the user’s trust in the automation and 
general tendency toward complacency. However, users’ trust in automation does not always lead them 
to use it (Masalonis & Pararsuraman, 1999). A user who trusts a system’s automation may opt not to 
use it when workload is low (to prevent boredom) or to sustain vigilance on the task. Alternatively, 
during demanding tasks, the user may decide to use the automation to reduce workload if the tool 
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meets an acceptable level of accuracy, safety, etc. To address this issue in the part-task study, we 
incorporated different levels of workload in the experimental task to investigate whether users were 
more likely to rely on automation under high-workload conditions even if the automation was less 
reliable in some situations. 

Trust in automation has been shown to be difficult to build but easy to break down (Masalonis 
and Parasuraman, 1999). Once users lose trust, they may deactivate the automation and stop using it 
altogether. This means that the automation never has the opportunity to prove itself. For this reason, 
we decided not to give the participants in the part-task study the opportunity to turn off the 
automation. We did not want to influence trust levels in unplanned ways. Instead, our  
part-task study manipulated the tool’s reliability by incorporating two different DST algorithms, and 
we trained half of the users about which algorithm was more reliable and which was less reliable under 
specified conditions. 

Other studies have examined the degree of automation reliability required for performance 
improvement (see reviews by Wickens & Dixon, 2007; Rein, Masalonis, Messina, & Willems, 2013), 
but Trapsilawati, Qu, Wickens, & Chen (2015) conducted one of the few studies we found that 
explicitly compared automation reliability levels for DSTs that provide recommendations. Although 
Trapsilawati et al. (2015) found that reliable automation for air traffic conflict resolution advisories 
resulted in better performance than “unreliable” automation, even the “unreliable” automation was 
successful at resolving the conflict and avoiding the creation of new conflicts 80% of the time. 
Furthermore, both the reliable and unreliable automation led to better performance than no 
automation. 

The number of recommendations a DST provides may vary. Sheridan and Verplank (1978) 
conducted seminal work on this topic, categorizing 4 levels of automation support: Level 1, in which 
the human operator determines the decision; Level 2, in which the computer helps determine the 
decision; Level 3, in which the computer helps determine the decision and suggests options to the 
user; and Level 4, in which the computer calculates the optimal decision that the user can choose to 
implement. The DSTs currently in use in today’s air traffic environment or under consideration for 
future operational implementation are generally classified as Level 3 because they provide multiple 
alternative suggestions for action. DSTs that rank the suggested solutions, such as the Conflict 
Resolution Advisor (CRA), are also under consideration (e.g., Trapsilawati et al., 2015). This tool 
comes close to Level 4 automation because it includes a highest-ranked solution. However, there is 
still no “pure” Level 4 automation in today’s air traffic environment. Therefore, it is appropriate to 
research the effects of presenting a single-decision choice before widespread implementation of such 
a capability is implemented. We investigated this type of automation, as well as Level 3, in this  
part-task study. 

In summary, the part-task study we conducted examined different levels of DST reliability on 
an aircraft rerouting task under different levels of workload. We trained one half of the participants 
on the logic of the DST algorithms and the conditions in which the algorithms would be more or less 
reliable. We provided aircraft rerouting trials with no recommendations (in which participants would 
have to use “what if” capabilities to evaluate options), a single recommendation, or three 
recommendations. We expect the results of this part-task study to be useful in making 
recommendations for the development of future DSTs and the development of DST training 
materials. 
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2. METHOD 

We designed this part-task experiment to examine the use of DSTs in TFM. We designed a 
primary task involving departure rerouting of aircraft around severe weather. Participants also 
performed two secondary distraction tasks to increase their workload. The entire experiment took 
approximately 2.5 hours. 

2.1 Participants 

Sixteen volunteers (11 males, 5 females) from the FAA William J. Hughes Technical Center 
(WJHTC) with no experience with TFM tools and procedures served as participants in this study. The 
age of the participants ranged from 25‒52 years old (M = 40.75, SD = 10.57). Half of the participants 
were assigned to a training group and received the situation-specific training (SST). Many of the 
participants in this study were research personnel in the Research Development and Human Factors 
Laboratory (RDHFL). To avoid any expertise-based bias, equal numbers of these participants were 
assigned to each group (three in each). All participants read and signed an Informed Consent 
Statement (Appendix A) that summarized their rights and responsibilities before participating. 

2.2 Materials 

2.2.1 Demographics Questionnaire 
The participants completed the demographics questionnaire (Appendix B) before beginning 

the experiment. It included questions about age, gender, and TFM or ATC experience. We also 
confirmed that participants had not received information from prior participants regarding the SST 
before we began the experiment. 

2.2.2  Complacency Rating Scale 
Before the participant performed the experimental tasks, we administered a survey to assess 

individual differences in attitudes toward automation and susceptibility to overreliance on automation. 
The instrument was based on the Complacency-Potential Rating Scale (CPRS) (Singh, Molloy, & 
Parasuraman, 1993). We made adjustments to two items because of the scale’s outdated technology 
references, such as an item about VCRs. We made edits to questions #7 and #20 to update the items 
pertaining to television and medical devices. The version used in this study is Appendix C. 

2.2.3 Questionnaires  
We included several questionnaires during the experiment; after each reroute, after each 

scenario, and at the end of all scenarios.  We provide screen shots of those surveys in Appendix D. 

2.2.4 Primary Rerouting Task 
The primary task for the participants was a departure rerouting task we designed based on the 

Integrated Departure Route Planning tool (DeLaura et al., 2012; Davison Reynolds & DeLaura, 2011). 
The task consisted of 10 experimental scenarios, each requiring the participant to reroute several 
aircraft around a weather event from one airport to another in fictional airspace. Although the task 
was based on tools a traffic manager might use, both the number of parameters used and the task 
itself were greatly simplified, so a participant with no TFM experience could learn and practice the 
task as well as complete the 10 experimental scenarios in 2‒2.5 hours. 
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A screenshot of the rerouting task is shown in Figure 1. It contains a map of all the routes and 
a list of aircraft to be routed through that airspace. During each scenario, five aircraft had their 
originally filed route blocked by severe weather (e.g., Route E) and had to be rerouted to a different 
route. The airports, route names, waypoint labels, and direction of flight varied between scenarios but 
stayed the same for all five flights throughout a single scenario. Table 1 shows all of the parameters 
that varied between scenarios. Every scenario began at 1900 hours, and each flight was scheduled to 
depart 15 minutes after the previous flight (1900, 1915, 1930, 1945, and 2000). 

 

Figure 1. A screenshot of the primary aircraft rerouting task. 

Table 1 Scenario variables 

Airports Traffic 
Direction 

Aircraft ID 
(ACID) 

Waypoint 
Labels Number of Scenarios 

SFO & DEN Eastbound  UAL 1-5 A through G 5 (5 flights in each) 

JFK & ORD Westbound JBU 1-5 H through N 5 (5 flights in each) 
 



 

5 

 

Each scenario featured seven routes from the departure airport to the destination airport. Each 
route passed through a single waypoint. At the start of each flight, the originally filed route was closed 
because of severe weather. For example, in Figure 1, UAL1 was originally filed as SFO..E..DEN. The 
participant had to choose an alternate route for the flight from among one of the six remaining routes. 
Each route was assigned a score. The score was based on four parameters that varied for each flight: 
weather, flight delay time, congestion level in the participant’s center, and congestion level in the 
neighboring center. Each parameter was assigned a numeric value that was weighted based on their 
relative importance, as determined by the experimenters, and combined to yield a final score for each 
route. Figure 2 shows the route table that displayed the parameters for each route at the departure 
time of that aircraft. These numbers combined to yield a score out of 1000 possible points for each 
reroute. In addition, a color scale indicated the relative severity (i.e., greatest negative impact to route) 
of that parameter. The colors used in this task (from lowest to highest) were: light green, dark green, 
yellow, and orange (Table 2). Red and gray indicated a closed route. The R/G/B values used can be 
found in Appendix E. 

 

Figure 2. The route table displaying scoring parameters. 

Table 2 Route parameter values 

 Weather Own Center Other Center Delay Time 
Gray 0 0 0 0 
Light Green 1-15 1-4 1-4 (-10)-1 
Dark Green 16-20 5-7 5-7 1-5 
Yellow 21-35 8-11 8-11 6-10 
Orange 36-50 12-15 12-15 11-20 
Red >50 N/A N/A N/A 

 

Weather: 

The originally filed route for each aircraft was blocked because of severe weather. This was 
represented visually on the route map (Figure 1) with a red box around the waypoint label. This was 
represented in the route table (Figure 2) with a red cell and “100” parameter value. The weather 
parameter for the other available routes varied from 1‒50, with a higher number indicating more 
severe weather. The weather condition predicted for each route was indicated by the color of the 
waypoint on the map and the color of the cells in the route table. We instructed participants that all 



 

6 

colors except red represented weather that was safe to fly in and that the lower the weather value the 
higher the score for that route. 

Own & Other Center Congestion: 

 The airspace on the route map (Figure 1) was separated into two halves: the airspace under 
the control of the participants’ OWN center and the airspace under the control of the OTHER center. 
In scenarios in which traffic was eastbound from SFO to DEN, the airspace containing SFO and the 
routes to the left of the waypoint were OWN, and the rest of the airspace was OTHER. In scenarios 
in which traffic was westbound from JFK to ORD, the airspace containing JFK and the routes to the 
right of the waypoints were OWN, and the rest of the airspace was OTHER. The OWN and OTHER 
labels were shown at the top of the screen throughout the scenario. 

 The aircraft congestion level along the routes was indicated by the color of the route line and 
the color of the corresponding cells in the route table. We told the participants that the number in the 
route table indicated the number of aircraft forecasted along the route. Rerouting onto a lower number 
(less congested) route yielded more points. 

Delay Time: 

 The delay time parameter was the number of minutes a flight would be delayed by choosing 
that route. This value varied from -10 to 20. A negative number meant a route was faster than the 
originally filed route and was a saving time. This parameter was not represented visually on the route 
map; it was only available in the route table. A faster flight time (less delay) yielded a higher score. 

Score calculation: 

 We developed the following formula to combine the individual parameters into a score for 
that route: 

((70-Weather)*8.1)+((20-Own Center)*14)+((20-Other Center)*9)+((20-Time)*7.4) 

The factors were weighted to represent the relative importance of each parameter, as 
determined by the researchers based on our knowledge of TFM and discussions with TFM SMEs to 
reflect the relative importance of these factors in the real world. We identified weather as the most 
important factor. A low value on the weather parameter contributed more to the score on that route 
than any other parameter. The second most important factor was the congestion level in the 
participant’s OWN airspace. Congestion levels in the OTHER airspace and flight delay contributed 
about equally to the score and were weighted the lowest. 

We instructed the participants that the overall goal of the task was to choose the  
highest-scoring route to obtain the highest possible score in each scenario. We trained the participants 
on the parameters and how the score was calculated. After each scenario, participants received 
feedback regarding their choices and score. 

2.2.4.1 Task sequence and “What-iffing” capabilities 
The participants had 4 minutes to reroute the five aircraft in each scenario. The route table 

(Figure 2) started as an empty table with no information except the indication that the originally filed 
route closed due to severe weather. The participants could gather information about other routes by 
selecting them with the mouse, a procedure we referred to as “what-iffing” because it allowed the 
participants to see the parameters associated with that route option. The alternate routes indicated the 
colors of the route lines and waypoints on the route map (Figure 1). Choosing to “what-if” a route 
option was followed by a 3-second delay before the information appeared in the route table. This 
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delay was added to mimic potential computer-processing time required by some tools to model 
information. The delay was also added to discourage participants from “what-iffing” all routes for all 
flights in every scenario. Because of the time pressure to complete the scenario within the allotted 4 
minutes, the delay introduced a cost to acquiring more information, and we hoped to encourage a 
more selective use of this feature. 

If all five aircraft were not rerouted within 4 minutes, the participants received a 500-point 
score penalty and an additional 10-point penalty for every 10 seconds over 4 minutes. We did this to 
encourage the participants to finish the scenario within 4 minutes. However, we still wanted to gather 
any rerouting choices for flights rerouted after the 4 minutes expired, so the scenario continued to run 
until the participants completed all of the reroutes. 

2.2.4.2 Route Recommendation Tool 

Most of the scenarios (8 of 10) had routes suggested by the Route Recommendation Tool 
(RRT). A suggested route had the parameter information for that route automatically displayed when 
the rerouting for that flight began. In addition, an asterisk was placed, in that route’s row, in the RRT 
column of the routing table to indicate that it was a “recommended” route. Four of the 10 scenarios 
had one route automatically recommended for each flight; four scenarios had three routes 
recommended for each flight. The two remaining scenarios had no automation suggestions. Figure 2 
shows a route table with three routes recommended by the RRT and all other routes “what-iffed.” 

The RRT varied in the quality of its recommendations; sometimes, it indicated the  
highest-scoring route available, and other times it did not. Therefore, the RRT varied whether it would 
reliably recommend a good route. We systematically assigned which route was recommended, allowing 
the creation of two types of scenarios: low-reliability scenarios and high-reliability scenarios. In a high-
reliability scenario, the recommended routes were likely to include the highest-scoring route. In the 
low-reliability scenarios, the recommended route never included the highest-scoring route. Table 3 
shows the rank of the recommended route’s score (1 = highest-scoring route). 

Table 3 Rank of the recommended route’s score (out of six). 

Number of 
Recommended Routes Low Reliability High Reliability 

1 2nd, 2nd, 3rd, 3rd, 3rd 1st, 1st, 1st ,1st, 2nd 

3 2-4th, 2-4th, 3-5th, 3-5th, 3-5th  1-3rd, 1-3rd, 1-3rd, 1-3rd, 2-4th 

2.2.5 Secondary Tasks 
The participants also performed two secondary tasks—a monitoring task and a 

communicating task—inspired by the types of tasks performed by traffic managers. There are many 
aspects to a traffic manager’s job and a variety of tasks they need to perform. These secondary tasks 
were added to simulate some of the demands on the traffic manager’s time and attention so we could 
perform our evaluation of DSTs in more operationally realistic circumstances. 

We varied the frequency of the secondary tasks during the scenario to vary the workload of 
the participants. In low-workload scenarios, each secondary task required four responses, whereas in 
the high-workload scenarios, each task required 10 responses. 
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2.2.5.1 National Airspace Monitoring  Task 
This secondary task required participants to monitor and report congestion values from a 

simulated National Airspace System (NAS) monitor shown in Figure 3. At the start of each scenario, 
all of the cells were randomly set to green or yellow. Periodically throughout the 4 minutes of 
rerouting, a cell would change from green or yellow to red (similar to what a traffic manager would 
see if the Monitor Alert Parameter (MAP) value was exceeded). When a cell turned red, participants 
were to select the red cell, revealing the predicted aircraft count (i.e., 18‒24) in that sector. Next, the 
participants had to report these three values: sector, time, and aircraft count by typing the values into 
three text boxes. In Figure 3, the goal was to select the red cell, enter 14 under “Sector,” enter 2130 
under “Time,” and the “Sector Count” number from that cell (not shown), and press the “Submit” 
button. The cell remained red for the duration of that scenario. The sector count remained visible to 
indicate which cell had already been selected. 

 

Figure 3. The National Airspace System monitoring interface. 

We were concerned that participants would not pay enough attention to the secondary tasks 
and only focus on the primary rerouting task. To encourage vigilance on the NAS monitoring task, 
participants were awarded or penalized points based upon the speed and accuracy of their submissions: 

• A correct response within 20 seconds of the cell turning red (+50) 

• A correct response, but after 20 seconds (-50) 

• An incorrect response (-100) 

• No response before scenario end (-100) 

Because there could be multiple cells turning red at one time, the task involved a working 
memory component (i.e., participants had to remember which of the red cells they were intending to 
respond to as they completed their submission). This led to an uncertainty regarding which cell was 
the intended target of an incorrect response, because a submission could contain elements belonging 
to two or three different red cells. Therefore, we knew whether the participants responded to any 
given cell correctly (all three submission fields matched a currently red cell), but we could not 
definitively distinguish between errors of omission (i.e., no submission) versus error of commission 
(i.e., a submission of incorrect information). 
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2.2.5.2 National Traffic Management Log Communicating  Task 
This task required participants to monitor the simulated National Traffic Management Log 

(NTML) window for new messages (Figure 4). Each message consisted of the time of the message, 
the message content, and the sender’s initials. The message content was based on content of actual 
messages that may be seen by traffic managers in the NTML. Each message had to be either 
“Forwarded” to their supervisor or simply “Acknowledged” (ACK button in Figure 4). If the message 
made a reference to either airport involved in the scenario (e.g., JFK/ORD or SFO/DEN), it was to 
be forwarded. If it did not, it was to be acknowledged. To avoid confusion, no messages in the 
currently active scenario contained references to the airports used in other scenarios (e.g., in a 
JFK/ORD scenario, no messages contained SFO or DEN). To incentivize quick and accurate 
responses, the following points were awarded or deducted: 

• A correct response within 10 seconds of message appearing (+50) 

• A correct response, but after 10 seconds (-50) 

• An incorrect response (-100) 

• No response before scenario end (-200) 

 

Figure 4. The National Traffic Management Log communicating interface 

2.2.6 Feedback 
At the conclusion of each scenario, and after completing a short questionnaire, the participants 

received feedback on their performance in the scenario they just completed. The goal of the feedback 
was to show the participants how well they did in relation to the automation. The scores for each 
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route for each flight were displayed on the screen. The route that the participant chose was highlighted 
in yellow. Any routes that would have yielded a higher score than the one chosen were also partially 
highlighted. All routes that were recommended by the automation were also indicated. The 
participants could quickly learn if their rerouting choices were optimal, how good the automation’s 
route recommendations were, and if their own choices were better or worse than the automation’s 
suggestions. 

The participants were also shown any points accumulated or lost based on their performance 
on the secondary NAS monitoring and NTML communication tasks. We hoped that displaying the 
points earned would motivate the participants to be efficient and effective in performing these 
secondary tasks. 

2.2.7 Training 
Prior to starting the experimental scenarios, all the participants completed a training session 

that instructed them on how to perform the task and obtain a high score. They also completed practice 
scenarios to gain experience working on the tasks and to mitigate learning effects in the first few 
experimental scenarios. The training consisted of a slideshow and interactive demo using the 
experiment software (the demonstration scenarios were simply modified experimental scenarios with 
no time component). The slides described the goals of each task and how to perform all elements. 
After reading several slides, the participants would perform an action or complete an element of the 
task in the demonstration scenario before reading several more slides in the training slideshow. The 
first demonstration scenario had no automation-suggested routes and guided the participant through 
the primary rerouting task and both of the secondary tasks. This was followed with detailed feedback, 
demonstrating how they performed as well as a verbal description on how to achieve a higher score. 
The participants then completed one practice scenario, which was similar to an experimental scenario 
with high workload and no automation, followed by another detailed feedback session. 

The participants then received a second slideshow about the RRT. All participants were told 
that the RRT automation’s ability to reliably recommend a high-scoring route would vary from 
scenario to scenario. However, half of the participants received an additional set of three slides that 
revealed how to tell when an upcoming scenario would be reliable or not—the basic description of 
the SST that would differentiate the two participant groups. There were two factors that determined 
whether reliability would be high or low: direction of flight and algorithm. Each scenario featured 
eastbound or westbound flights. The RRT made recommendations using either Algorithm X or 
Algorithm Y. The algorithm names were randomly assigned labels. The SST participants were told:  

RRT Algorithm X was developed in consultation with United Airlines (UAL) dispatchers and 
with operational personnel at the Centers through which UAL’s eastbound flights from SFO 
to DEN operate. It does better using the preferences of UAL and of controllers near SFO & 
DEN airspace to decide which combination of weather, congestion, and delay times will result 
in a high-scoring reroute” and “RRT Algorithm Y was developed in consultation with JetBlue 
Airways (JBU) dispatchers and with operational personnel at the Centers through which JBU’s 
westbound flights from JFK to ORD operate. It does better using the preferences of JBU and 
of controllers near JFK & ORD airspace to decide which combination of weather, congestion, 
and delay times will result in a high-scoring reroute.   

A summary of these reliability factors is shown in Figure 5, which was shown to the participants who 
received the extra training. A printout of the figure was given to them as a reference card to help 
remind them of the relationship. This information was critical to predicting whether the automation 
would be reliable or not, because the direction of traffic and algorithm to be used were shown to the 



 

11 

participants before they began the scenario. This information was meaningful to the trained 
participants, but was not meaningful to the participants who were not trained about it. Both algorithms 
and directions of flight were associated with both high and low reliability (e.g., algorithm X was reliable 
in some scenarios and unreliable in others). It was a complicated relationship and the participants not 
receiving the additional training could not easily deduce the relationship between algorithm, direction 
of flight, and RRT reliability. 

 

Figure 5. A summary slide of the SST for the RRT showing when the automation’s recommendations 
would be reliable or not. 

This phase of training was accompanied by a demonstration scenario and followed by two 
practice scenarios. The demonstration scenario had highly reliable automation recommendations. The 
first practice scenario had low-reliable automation and the second was high. The participants who did 
not receive the extra training were told we were using Algorithm P (a blend of X and Y) for the 
practice scenarios. We did this to make it harder for the untrained participants to figure out the pattern 
of reliability. The practice scenarios were similar to the experimental ones with one difference: during 
an experimental scenario, the RRT always made the same number of recommendations (one or three) 
for each of the five flights. However, during the practice scenarios, the number of recommendations 
alternated between one and three for demonstration purposes. 
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2.3 Procedure & Experimental Design 

We included four experimental parameters or independent variables (IVs). We manipulated 
these variables in our experiment to see the effect they would have on participants’ performance of 
the tasks, known as the dependent variables. There were ten experimental scenarios. The IVs were 
counterbalanced so that they co-occurred equally. Instead of randomizing condition orders or 
systematically varying them in a Latin square or similar design, we explicitly specified certain orders 
for the combinations of independent variables in a way that attempted to avoid overly biasing any 
participant into a certain initial attitude about the automation or the task. More details regarding the 
scenario development and ordering are in Appendix E. 

2.3.1 Situation-Specific Training 
The details of the training are outlined in section 2.2.6. Eight of our 16 participants received 

the supplementary SST training, whereas the other eight did not. The two groups (SST or No-SST) 
were matched on the basis of gender, age, and human factors research experience. All 16 of the 
participants performed the same scenarios, so this was a between-subjects variable. 

2.3.2 Workload 
The participants’ workload was manipulated by the number of events in the secondary tasks 

during a scenario. There were two levels of workload in this study. In the low-workload scenarios, 
four NAS monitor cells turned red and four NTML messages appeared throughout the scenario. In 
the high-workload scenarios, 10 of each secondary event occurred. The two levels were informed by 
pilot testing with developmental personnel and other researchers. Of the 10 scenarios, five were low 
workload, and five were high workload. 

2.3.3 The Number or Recommendations 
Each scenario had zero, one, or three recommended routes for each of the five flights. We 

varied the number of recommendations (NREC) across scenarios. Four scenarios had one 
recommendation, four had three recommendations, and two scenarios had no recommendations. This 
variable allowed us to address the question as to what level of automation (e.g., single best, several 
options) is associated with higher performance. 

2.3.4 Automation Reliability 
There were two levels of reliability in this study. The ranks of the recommended routes (out 

of six) are shown previously in table 4. There were four low-reliability scenarios and four high-
reliability scenarios. The two scenarios that had zero automation recommendations could not be 
reliable or unreliable, by definition. The combination of all variables is shown in Table 4. 

Table 4 The ten experimental scenario types performed by all participants. 

Scenario: 1 2 3 4 5 6 7 8 9 10 
Workload Low Low Low Low Low High High High High High 
NREC 1 1 3 3 0 0 1 1 3 3 
Reliability Low High Low High N/A N/A Low High Low High 
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3. RESULTS 

We analyzed the data to evaluate the effects of the independent variables (IVs) on the various 
dependent variables. The IVs were: Stimulus-Specific Training Group (SST versus no-SST), Workload 
(low versus high), Automation Reliability (low versus high), and NREC (one versus three). We 
conducted three principle types of data analyses and used an alpha level of 0.05 to determine statistical 
significance. The first analyses were T-tests between the training groups (SST versus no-SST). We 
tested demographic factors and CPRS scores to determine whether any  
pre-experiment differences were evident between the participants who were assigned to the SST group 
and the no-SST group. The other two analyses involved a mixed-model multiple analysis of variance 
(ANOVA) between group (SST versus no-SST) factor and repeated-measures factors representing the 
relevant independent variables. We did this to assess the impacts of all IV in the same statistical model 
rather than perform tests of each IV individually and inflating our alpha rate. We used the mixed 
model to combine a categorical variable (training group membership) with the repeated-measure 
factors performed by all participants. 

We analyzed the behavioral effects of the IVs using a 2x2x2x2 (SST group x NREC x workload 
x reliability) ANOVA. The dependent variables we analyzed were the scores on the rerouting task, the 
response times to the secondary tasks, and responses to the survey questions. The rerouting score was 
the total score obtained by rerouting all five flights in a scenario. The same analyses done on the raw 
scores reported below were also performed using the proportion of the score obtained for a scenario 
out of the maximum possible score for that scenario. The results from those two sets of tests did not 
differ, so only the raw scores are reported. 

3.1 Between-Group Demographics and Complacency Rating Scale 

We attempted to match the age and experience of the SST and no-SST groups to minimize 
demographic differences between them. We assigned participants to a group based on age, gender, 
TFM experience, ATC experience, and whether or not they worked at the RDHFL. We did this so 
that any differences in performance we observed between the training groups could be attributed to 
the training manipulation and not to a pre-experimental difference. Table 5 summarizes the age and 
genders of the participants assigned to each group. The SST and no-SST groups did not differ in age 
[t(14) = 0.70, p = 0.497], and the groups were matched on the other factors. 

Table 5 Count of gender and Mean age (standard deviation) in the SST groups. 

 Gender Mean (SD) Age 

SST, N=8 F=3, M=5 38.87 (8.84) 
No SST, N=8 F=2, M=6 42.62 (12.39) 

We also found no difference in the Complacency Rating Scale scores between the SST  
(M = 62.75, SD = 5.80) and no-SST (M = 65.13, SD = 6.29) groups, [t(14) = 0.78, p = 0.445]. 
Therefore, we are further confident that any observed difference in performance between the SST 
group and no-SST group was due to the experimental training manipulation and not due to  
pre-experimental differences between the groups. 
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3.2 Primary Rerouting Task 

The primary dependent variable of interest was the total score from the rerouting task. We 
obtained one total rerouting score per scenario by adding the scores from the five flights. 

Two of ten scenarios had no automation recommendations, one of each workload condition. 
We used a 2x2 (group x workload) ANOVA to analyze the score for those scenarios. There was no 
difference in score between the SST and no-SST groups in the no-automation conditions (Figure 6), 
[F(1,14) = 0.01, p = 0.942], again indicating that the two groups did not differ from one another before 
any experimental variables were introduced. 

 
Figure 6. The average rerouting scores in the no-automation condition. The error 

bars represent the standard error of the mean. 

Eight scenarios for each participant featured automated recommendations. The five flights in 
each scenario were summed and submitted to a 2x2x2x2 ANOVA to test the effects of each 
independent variable. We present only the results significant at p <0.05. There were no three- or four-
way interactions. There were several significant two-way interactions. The interactions between the 
independent variables offer insight into how the variables influence the use of DSTs. We conducted 
post-hoc T-tests on the means for the condition in the interactions to evaluate differences. Participants 
in the SST group did not score statistically higher than the no-SST group overall. This is due to a 
Training Group x Workload interaction [F(1,14) = 13.29, p = 0.003]. At low workload, the two groups 
performed at the same level [t(14) = 0.39, p = 0.703]. However, at high workload, the SST group 
outperformed the No-SST group [t(14) = 2.99, p = 0.010] (Figure 7). 
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Figure 7. Interaction of Workload and SST on rerouting performance. The error bars represent the 
standard error of the mean. 

We found an interaction between DST reliability and the number of recommendations it made 
[F(1,14) = 11.07, p = 0.005] (Figure 8). During scenarios when the automation was less reliable, one 
and three recommendation yielded similar performance [t(15) = 1.16, p = 0.264]. However, when the 
automation was more reliable, we found that performance was better when only one recommendation 
was provided, [t(14) = 2.26, p = 0.039]. 
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Figure 8. Interaction of automation reliability and number of automation recommendations on 

rerouting performance. The error bars represent the standard error of the mean. 

There was an interactive effect of workload and DST reliability [F(1,14) = 7.24, p = 0.018] 
(Figure 9). When workload was high and automation reliability was low, performance was at its lowest 
When workload was low, low automation reliability had less of a negative impact on performance. 
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Figure 9. Interaction of workload and automation reliability on rerouting performance. The error bars 

represent the standard error of the mean. 

There was a numerical difference in rerouting scores between the two training groups, but it 
was not statistically significant [F(1,14) = 3.35, p = 0.089]. This is due to an interaction between 
training and workload (Figure 7). We also did not find a main effect of the number of 
recommendations, one or three [F(1,14) = 0.07, p = 0.796]. We did find a significant difference of 
rerouting score as a function of workload [F(1,14) = 52.77, p < 0.001], with low workload yielding a 
higher score than high workload (see Figure 10). We also found that scores were higher when the 
automation recommendation was more reliable [F(1,14) = 43.63, p < 0.001]. 
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Figure 10. The average rerouting score in each condition. The error bars represent the standard error 
of the mean. N.S. = no statistically significant difference at p < 0.05. 

3.3 Secondary Task Results 

In addition to the primary rerouting task, participants completed two simultaneous secondary 
tasks. We analyzed the data from these tasks using the same ANOVA models used for the primary 
rerouting task, and we will only report effects that were significant at p < 0.05. The accuracy for both 
secondary tasks was extremely high (>90%), and a lack of variance in this measure meant that we 
could not analyze it. However, we were able to use response time to these tasks as our dependent 
variable. 

3.3.1 NAS Monitoring and Reporting 
The NAS Monitoring and Reporting task required the participants to acknowledge when a 

sector turned red. The participants selected the red cell and entered the number of aircraft expected 
in a text box. The mean accuracy for this task was 96.33% (3.42%). The ANOVA model could not be 
fit to the accuracy data, as some conditions had no variance (i.e., all participants scored 100%). 
However, direct comparisons between the means of each condition using a T-test revealed no 
differences in accuracy between conditions or group. 

The other dependent variable of interest for this task was the response time (RT) between a 
cell in the NAS array turning red and the participant selecting it to reveal the flight count (Figure 3 
from section 2). There was no effect on RT in the no-automation condition. There was no difference 
in NAS Monitoring RT between the training groups in the no-automation condition, no difference 
between low and high workload, and no interactions [all p > 0.102]. 
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However, in the automation conditions, NAS Monitoring RT was faster when workload was 
lower (Figure 11) [F(1,14) = 9.89, p = 0.007]. There were no other main effects and no two-way 
interactions. However, there was a significant three-way interaction of NREC x Reliability x SST group 
[F(1,14) = 5.14, p = 0.040]. In the absence of other main effects and two-way interactions, 
interpretation of the functional significance of the three-way interaction is difficult to interpret. The 
functional significance of this effect is unclear. 

 
Figure 11. The average response time on the NAS monitoring task for low and high workload. The 

error bars represent the standard error of the mean. 

3.3.2 NTML 
The other secondary task pertained to NTML messages. The participants had to either 

acknowledge or forward each message as described in section 2.2.4.2. The dependent variable of 
interest for the NTML communication task was the RT between a message appearing in the NTML 
window and the participant forwarding or acknowledging the message. 

There was no difference in NTML RT between the training groups in the no-automation 
condition [F(1,14) = 1.43, p = 0.252], but the NTML RT was faster when workload was lower [F(1,14) 
= 4.88, p = 0.044]. There was no interaction [F(1,14) = 0.35, p = 0.566]. 

In the automation condition, the only significant effect on NTML RT was workload (Figure 
12). Response time was faster when workload was lower [F(1,14) = 8.32, p = 0.012]. 
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Figure 12. The average response time on the NTML task for low and high workload. The error bars 
represent the standard error of the mean. 

3.4 Task Questionnaire Results 

We presented three questionnaires to the participants during the experiment. All 
questionnaires used 10-point scales, with 1 indicating the lowest rating and 10 indicating the highest 
rating. This section lists all of the questions and any significant effects. 

3.4.1 Post-Reroute Survey 
After rerouting each flight, the participants answered two questions about the reroute they just 

performed (see Appendix D). The average rating of the five flights in each scenario was submitted to 
the 2x2x2x2 ANOVA for each question. 

 
1. How confident are you that this route is a good choice? 

• Participants were more confident that their route was a good choice under low workload 
conditions [F(1,14) = 17.03, p = 0.001]. The mean ratings were 7.00 (2.32) and 6.50 (2.02) 
in the low- and high-workload conditions, respectively. 

2. To what extent did you rely on the RRT recommendation in making this rerouting decision? 
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• Participants reported relying more on the automation when the workload was high 
[F(1,14) = 5.38, p = 0.036]. The mean ratings were 5.14 (1.80) and 5.16 (1.79) in the low- 
and high-workload conditions, respectively. 

• Participants reported relying more on the automation in scenarios when the automation 
was more reliable [F(1,14) = 48.50, p < 0.001]. The mean ratings were 4.11 (2.13) and 
6.48 (1.64) in the low- and high-reliability conditions, respectively. 

• There was a significant interaction between automation reliability and training group. The 
increase in reported “reliance” on automation from low to high reliability was greater for 
the SST group than the no-SST group F(1,14) = 20.79, p < 0.001] (Figure 13). The no-
SST group “relied” on automation to about the same extent regardless of the 
automation’s reliability; whereas the SST group “relied” more on high-reliability 
automation than low-reliability automation. 
 

 
 

Figure 13. Interaction of SST and automation reliability on ratings of “reliance” on automation. The 
error bars represent the standard error of the mean. 

3.4.2 Post-Scenario Survey 
After each scenario, participants answered eight questions, the first six of which were from 

the NASA Task Load Index (NASA-TLX). The ratings were submitted to the 2x2x2x2 ANOVA for 
each question. The mean ratings are listed for each question and presented in Figure 14. Note that 
we were missing one survey after one scenario for one subject due to a data-logging error, so the 
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degrees of freedom for these tests are lower (df = 13) than the other tests in this report  
(df = 14). 

 

 
Figure 14. The average rating of six survey questions from the NASA-TLX questions. The error bars 

represent the standard error of the mean. 

1. Rate your mental demand during this scenario (e.g., thinking, deciding, calculating, remembering, looking, 
searching, etc.). 

• Participants rated their mental demand higher under high-workload conditions [F(1,13) 
= 38.58, p < 0.001]. The mean ratings were 5.13 (2.35) and 6.50 (2.03) in the low- and 
high-workload conditions, respectively (Figure 14). 

• There was a significant interaction between Workload and NREC. The magnitude of the 
increase in rating when workload increased was greater when the automation made one 
suggestion and then three suggestions [F(1,13) = 5.02, p = 0.043] (Figure 15). 
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Figure 15. Interaction of workload and number of recommendations on ratings of mental demand. 

The error bars represent the standard error of the mean. 

2. Rate your physical demand during this scenario (e.g., communications and key presses). 

• Participants rated their physical demand higher if they were in the No-SST group [F(1,13) 
= 11.62, p = 0.005]. The mean ratings were 5.61 (2.43) and 2.77 (2.28) in the No-SST and 
SST groups, respectively. 

• Participants rated their physical demand higher under high-workload conditions [F(1,13) 
= 18.81, p < 0.001]. The mean ratings were 3.74 (1.74) and 4.64 (1.69) in the low- and 
high-workload conditions, respectively (Figure 14). 
 

3. Rate your temporal demand during this scenario. (How much time pressure did you feel due to the rate or pace 
at which the tasks or task elements occurred?) 

• Participants rated their temporal demand higher under high-workload conditions [F(1,13) 
= 59.49, p < 0.001] The mean ratings were 4.59 (2.37) and 6.52 (2.19) in the low- and 
high-workload conditions, respectively (Figure 14). 
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• There was a significant interaction between workload and NREC. The magnitude of the 
increase in rating when workload increased was greater when the automation made one 
suggestion than three suggestions [F(1,13) = 11.95, p < 0.001] (Figure 16). 
 

 
Figure 16. Interaction of workload and number of recommendations on ratings of temporal demand. 

The error bars represent the standard error of the mean. 

4. Rate your effort during this scenario. [How hard did you have to work (mentally and physically) to accomplish 
this level of performance?] 

• Participants rated their level of effort higher under high-workload conditions  
[F(1,13) = 40.33, p < 0.001]. The mean ratings were 4.99 (2.67) and 6.33 (2.16) in the low- 
and high-workload conditions, respectively (Figure 14). 

• There was a significant interaction between workload and NREC. The magnitude of the 
increase in rating when workload increased was greater when the automation made one 
suggestion than three suggestions [F(1,13) = 5.47, p < 0.036] (Figure 17). 
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Figure 17. Interaction of workload and number of recommendations on ratings of the level of effort 

required to maintain performance. The error bars represent the standard error of the mean. 

5. Rate your frustration level during this scenario. (How insecure, discouraged, irritated, stressed, and annoyed 
did you feel during the task?) 

• Participants rated their frustration level higher under high-workload conditions  
[F(1,13) = 32.40, p < 0.001]. The mean ratings were 3.19 (1.86) and 4.63 (2.20) in the low- 
and high-workload conditions, respectively. 

6. Rate your own performance in choosing reroute options without relying on the RRT. 

• Participants rated their performance higher under low-workload conditions  
[F(1,13) = 39.19, p < 0.001]. The mean ratings were 6.12 (1.80) and 5.46 (1.62) in the low- 
and high-workload conditions, respectively (Figure 14). 

• There was a significant interaction between workload and SST training. The increase in 
rating for low workload was greater in the SST group than no-SST group  
[F(1,13) = 5.02, p = 0.043] (Figure 18). 
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Figure 18. Interaction of workload and SST on ratings of individual performance. The error bars 

represent the standard error of the mean. 

7. Rate the RRT’s performance in suggesting appropriate reroutes for this scenario. 

• Participants rated the RRT’s performance higher for more highly reliable scenarios 
[F(1,13) = 15.25, p = 0.002]. The mean ratings were 4.39 (2.13) and 6.33 (1.77) for  
low- and high-reliability scenarios, respectively. 

• Participants rated the RRT’s performance higher when it made one recommendation 
rather than three recommendations [F(1,13) = 5.23, p = 0.040]. The mean ratings were 
5.65 (1.94) and 5.06 (2.02) for one and three recommendations, respectively. 

• There was a significant interaction between automation reliability and SST training. The 
SST participants showed a larger increase in their ratings between the low- and  
high-reliability scenarios (7.19 > 4.03) than the no-SST group (5.46 > 4.75), SST by 
Reliability interaction [F(1,13) = 6.07, p = 0.028] (Figure 19). 
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Figure 19. Interaction of automation reliability and SST on ratings of the automation’s performance. 

The error bars represent the standard error of the mean. 

8. Rate the overall system performance (you and the RRT as a “team”) in making appropriate rerouting decisions 
for this scenario. 

• There was no effect of any of the independent variables on participant’s rating of system 
performance other than a three-way interaction of NREC x Reliability x SST [F(1,13) = 
5.03, p = 0.043]. In the absence of any main effects, the interaction is not interpretable. 

3.4.3 Post-Experiment Survey 
At the conclusion of the experimental scenarios, participants completed a final set of nine 

questions that asked them to rate various aspects of their own performance and the automation’s 
performance. We submitted the ratings for the first seven questions to a two-tailed T-test to examine 
the differences between the training groups. The associated statistics are presented in Table 6. The 
SST group rated the RRTs performance in suggesting appropriate reroutes higher than the no-SST 
group. There was no other statistically significant difference between training groups in the first seven 
questions. The last two questions had oppositional wording, both related to using an RRT suggested 
reroute and busyness. Therefore, we were able to use a more powerful and sensitive statistical test for 
these two questions. We used a 2x2 mixed-model ANOVA (Training group x Busyness repeated-
measure factor) to take advantage of their relatedness and shared variance. The SST group rated that 
they were more likely to use the automation’s suggested reroute (M = 6.56, SD = 2.23) than the no-
SST group (M = 4.81, SD = 2.23) [F(1,14) = 4.94, p = 0.043]. In addition, participants rated an 
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increased likelihood to use a suggested reroute when they were busy (M = 6.63, SD = 1.94) than when 
they were not busy (M = 4.75, SD = 1.63)  
[F(1,14) = 19.33, p < 0.001]. There was no interaction between training group and busyness. 

Table 6 Results of Post-Experiment Survey Analyses with Means.  

Question  SST  No-SST Significant 
1. Rate your own performance in choosing 

reroute options without relying on the RRT. 
6.75 (1.58) 6.00 (1.69) (N.S) 

p = 0.375 
2. Rate the RRT’s performance in suggesting 

appropriate reroutes. 7.13 (0.64) 5.00 (1.93) t(14) = 2.96 
p = 0.010 

3. Rate the overall system performance (you and 
the RRT as a “team”) in making the 
appropriate rerouting decisions. 

7.25 (0.89) 6.63 (2.13) (N.S) 
p = 0.457 

4. Overall, how much did you trust the RRT to 
provide a good choice(s)?  

6.25 (0.89 4.88 (1.96) (N.S) 
p = 0.092 

5. Rate your level of performance in the NAS 
Monitor and NTML tasks. 

7.50 (1.85) 7.25 (1.85) (N.S) 
p = 0.843 

6. Rate your overall workload for this 
experiment. 

6.25 (1.75) 7.13 (2.36) (N.S) 
p = 0.413 

7. How much did workload of the NAS Monitor 
and NTML tasks affect your performance on 
the rerouting task? 

5.63 (1.75) 6.63 (3.02) (N.S) 
p = 0.448 

8. How likely were you to use a RRT suggested 
reroute when you were busy? 6.56 (2.23) 4.81 (2.23) F(1,14) = 4.94 

p = 0.043 9. How likely were you to use a RRT suggested 
reroute when you were not busy? 

  

4. SUMMARY AND RECOMMENDATIONS 

The goal of this part-task experiment was to investigate factors that contribute to or influence 
the use of DSTs. We examined three conditions in this experiment: workload, automation reliability, 
and the number of recommendations provided by the automation. In addition, we examined the 
effects of supplemental DST training. Half of the participants completed the additional SST and half 
did not. We used a simplified weather rerouting task and two secondary tasks to obtain objective 
measures of behavior. We also presented several questionnaires throughout the experiment to assess 
the participant’s subjective experience with DST use. In this section of the report, we present our 
conclusions of the results and provide speculations on the potential relevance to operational situations 
for each IV. 

 

4.1 Workload 

We manipulated workload by changing the number of responses needed for participants to 
accomplish secondary tasks. Our manipulation was effective, in that high workload negatively 
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impacted objective measures of performance and subjective ratings of workload. Rerouting 
performance decreased when workload increased. It is not surprising that high workload would 
negatively impact performance. However, the interpretation of the interactions between workload and 
the other experimental factors, discussed later, depended on our workload manipulation being 
effective. 

We found workload to be an important factor contributing to DST use in our task. The 
development and deployment of DSTs for operational use must account for user workload to be 
maximally effective. 

4.2 Number of Recommendations 

The inspiration to manipulate the NREC made by the automation comes from the levels of 
automation theory (Sheridan & Verplank, 1978). This theory predicts different outcomes from 
situations when automation makes one versus multiple recommendations. Our manipulation of the 
NREC had no direct impact on objective measures of performance. Rerouting performance did not 
differ between conditions that provided one recommendation or three recommendations. However 
there was an interaction between the NREC and automation reliability. When the automation was 
highly reliable, the participants performed better when the automation made one recommendation 
than when it made three recommendations. Conversely, when the automation was not as reliable, 
participants performed better when the automation made three recommendations than when it made 
one recommendation. We also found statistical interactions between NREC and workload on several 
subjective measures of workload. Participants rated the RRT’s performance higher overall when it 
made one recommendation than when it made three recommendations. This leads to a complicated 
picture regarding the ideal number of recommendations for a DST to provide. The ideal number of 
recommendation for a DST likely depends upon the task at hand and the current workload of the 
user. 

We can use an analogy with GPS navigation while driving a car to illustrate this point. When 
we are driving and our preferred route closes, we need to find an alternate route. As we are likely very 
busy with the tasks involved in driving, we would prefer our DST (e.g., a navigation app on our 
smartphone) to make one reliable recommendation. In this high-workload context, a DST that 
proposes multiple options will force the user to use valuable time and attention resources to evaluate 
and choose among many options. In contrast, if we are planning a future trip, our workload is not as 
high, and we can evaluate multiple options. 

4.3 Automation Reliability 

We manipulated the automation’s reliability by changing how likely it was to provide a  
high-scoring route. Scenarios with highly reliable recommendations led to increased performance on 
the rerouting task. In addition, participants subjectively rated the RRT’s performance higher for high-
reliability scenarios. They also reported “relying” more on the automation in scenarios when the 
automation was more reliable. Therefore, we can be confident that our reliability manipulation was 
effective. Reliability and the interaction of reliability with workload provide the most insight into the 
application of this study’s results to the operational environment. 

When the automation was not reliable, performance on the rerouting task suffered. A high 
workload also decreased performance on the rerouting task (Figure 7). When the route 
recommendations provided by the automation were not optimal, there was an increased need to 
evaluate alternative routes. When workload was low, the participants had the necessary time and 
cognitive resources to perform that evaluation. However, when the participants were under high 
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workload, they did not have the time to evaluate the alternatives fully and were forced to rely on the 
automation’s recommendations. When the DST recommendations were not reliable, this led to poor 
performance. 

When workload is low, there is enough time to evaluate all alternative options including those 
the DST has generated as well as the participant’s own. In these situations, even a low-reliability DST 
may be helpful. When traffic managers are busy (which is probably most of the time), there is less 
time to fully evaluate all options, and the DSTs need to be more reliable. A low-reliability DST might 
be less helpful (or even harmful) to performance in a high-workload environment. Therefore, the 
users’ workload context should be considered when evaluating how reliable an individual DST needs 
to be in order to be most effective. Our study used only two levels each of reliability and workload: 
low and high. It is unclear at what exact workload level an unreliable DST recommendation becomes 
useful. Future research is needed to get a better sense of the actual levels of workload and reliability 
that would have an impact in an operational setting. 

The reliability and number of recommendations had an interactive effect on performance 
(Figure 9). When reliability was high, one recommendation led to better performance. However, when 
reliability was low, three recommendations led to better performance. This suggests that a DST that 
provides only one recommended course of action should be provided if the reliability of the suggestion 
is high. If the reliability of the tool is not as good, it may be better for it to provide multiple alternatives. 

If we return to our example of rerouting a car while driving, the single recommendation needs 
to be reliable. If it is not a good reroute, time and fuel are wasted, and frustration increases. If the 
automation’s recommendations are unreliable, pulling over and evaluating more options may be 
preferable. It may make a decision more difficult in the short term, but it may lead to more positive 
outcomes overall by avoiding poor reroutes. 

4.4 Training 

We distributed our participants into two groups. Both groups received a training session about 
how to perform the task. However, one group received additional SST that provided details about 
how the automation worked and the conditions under which it would be more or less reliable. The 
other group (i.e., no SST) did not receive this additional training. The rest of the experiment was 
identical for the two groups. We wanted the two groups to be as similar as possible, because we wanted 
any differences in performance between the groups to be due to our training manipulation and not to 
random pre-experimental variables. Our two groups were matched with regard to age, gender, and 
human factors research experience but were otherwise randomly assigned. The two groups scored 
similarly on the Complacency Rating Scale, a survey designed to assess individual differences in 
attitudes toward automation and susceptibility to overreliance in automation. In addition, the two 
groups did not perform differently on the rerouting task in the scenarios with no automation 
recommendations (Figure 6). Therefore, we can be confident that any effect the SST had on 
performance in the scenarios with automation was not due to a random difference in ability between 
the two groups. 

The group that received the additional training scored numerically higher than the group that 
did not, although we did not find a statistically significant difference. This was likely due to the 
interaction between workload and training (Figure 8). When workload was low, the two groups 
performed equally. However, when workload was high, the SST group performed much better than 
the no-SST group. The additional training helped mitigate the performance decline caused by high 
workload. Knowing the situations when the automation could be relied upon, meant the SST 
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participants did not have to evaluate all of the options as thoroughly as the untrained participants. 
This improved performance in high-workload situations when evaluation time was reduced. The SST 
participants also rated that they were more likely to use the automation’s suggested reroute than the 
no-SST group. 

5. CONCLUSION 

In summary, decision-support tools (DSTs) can improve performance, but care should be 
taken in the areas of reliability, training, and tool design. DSTs are most needed by traffic managers 
when they are dealing with system stressors such as weather, equipment outages, and congestion. 
These are high-workload situations during which they are attempting to deal with the current 
constraints and meet the demands of multiple tasks. Based on the findings of this part-task study, the 
reliability of the DST may be a critical factor in whether they get any benefit out of its use. If the DST 
is going to provide a single recommended solution, it should be a reliable one, otherwise performance 
may suffer. Finally, a training that addresses the strengths and weaknesses of the DST has a big impact 
on performance when workload is high. Based on the findings reported here, when workload increases 
and performance starts to decline, the proper training can counteract this decline by helping the traffic 
managers make the best use of the DST. 

This study was conducted with novices, but experienced Traffic Flow Management (TFM) 
personnel have developed solution sets based on strategies that have worked for them in the past. If 
the automated recommendations are not in line with those proven strategies, they may be less likely 
to use the DST, even when workload is high. The downfall of this behavior is that the automated 
recommendations may be better solutions than the ones they have relied on in the past. Therefore, to 
succeed, the automation will have to be reliable, and the experienced TFM personnel will need training 
that effectively convinces them that the automation can be trusted in specific situations. 

It will be important to conduct a study, similar to the one presented here, using TFM personnel 
with a range of experience levels to determine whether the same results we found in novices apply to 
experienced users. It is likely that experienced TFM personnel and less-experienced TFM personnel 
differ from one another in how they make use of the DST and the type of training that is most 
effective. DST training for more experienced users may need to be targeted more specifically to 
helping them determine where benefits from the automation can be gained, such as by providing 
information as to when the tool provides a faster resolution, or identifying and providing solutions to 
situations that these users encounter less frequently. 

Another important consideration for experienced TFM personnel is the level of effort required 
to use the DST. If they find that it takes significantly more time, or requires more steps to generate 
and implement an automated recommendation, they may quickly revert to their former solution sets 
and processes. The design of the DST, its usability, and its integration into their workflows become 
very important. 

Less-experienced TFM personnel may behave differently. They have fewer situations to draw 
from and may be less certain about their decisions. They may be more likely to rely on automation 
recommendations. Training for these users may be effective at a more general level than training for 
experienced users because the less experienced users are still learning the effects of the different 
conditions that influence outcomes. Their results may be more similar to those of the novices in the 
current study. It would be useful to evaluate whether less experienced and more experienced TFM 
personnel differ from one another in their level of reliance on automation and in their level of 
complacency regarding automation. It is also important to assess whether users with different 
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experience levels demonstrate different workload thresholds at which they begin to rely on automation 
and under which conditions their workload is most affected. Understanding these distinctions will be 
useful in developing more targeted training solutions for a range of users and will ultimately enable 
them to make more effective use of the DST. 
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Acronyms 

ANOVA 

ARTCC 

Analysis of variance 

Air Route Traffic Control Center 

ATC Air Traffic Control 
ATCSCC Air Traffic Control System Command Center 
ATCT Air Traffic Control Tower 
ATM 
CPRS 

Air Traffic Management 
 Complacency-Potential Rating Scale 

CRA Conflict Resolution Advisory 
DST  Decision-support tool 
IV 
JBU 

Independent variable 
JetBlue Airways 

NAS National Airspace System 
NASA 
NASA-TLX 

National Aeronautics and Space Administration 
NASA Task Load Index 

NREC Number of recommendations 
NTML National Traffic Management Log 
RDHFL 
RRT 
RT 
SME 

Research Development and Human Factors Laboratory 
Route recommendation tool 
Response time 
Subject matter expert 

SST Situation-Specific Training 
TFM 
TMC 
TMS 

Traffic Flow Management 
Traffic Management Coordinator 
Traffic Management Specialist 

TRACON Terminal Radar Approach Control 
UAL 

WJHTC 
United Airline 

William J. Hughes Technical Center 
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Informed Consent Statement 
 

 

I, __________________________________, understand that this study, entitled NextGen Traffic 
Flow Management (TFM) Tools: Guidance for Use, Integration, and Training, is sponsored by the 

Federal Aviation Administration (FAA). 

Nature and Purpose: 

I have been recruited to volunteer as a participant in this project. The purpose of this study is to 
develop a better understanding of human behavior when using the types of Decision Support Tools 
planned for the Traffic Flow Management domain. The results of this study will generate 
considerations and suggestions for adding Decision Support Tools in the TFM environment. 

Study Procedures: 

Approximately sixteen (16) volunteers, primarily from the William J. Hughes Technical Center, will 
participate in this experiment, designed to simulate some of the demands of TFM. The experiment 
plus all training and questionnaires will take approximately 2 hours. After the conclusion of the 
experiment, participants and researchers will conduct a final debriefing session to share questions, 
comments, and feedback. 

Anonymity and Confidentiality: 

My participation in this simulation is strictly confidential. Any information I provide will remain 
anonymous; no individual names or identities will be associated with the data or released in any 
reports. 

Benefits: 

I understand that the only benefit to me is that I will be able to provide valuable feedback and 
insight into the effectiveness of potential ATC tools and procedures. My contribution will help the 
FAA to determine the benefits and feasibility of these modifications. 

Participant Responsibilities: 

I will perform the tasks presented during this study to the best of my ability and will answer all 
questions asked during the study truthfully. I will not discuss the content of the study with anyone 
until the study is completed. 

Participant Assurances: 

I understand that my participation in this study is completely voluntary and I can withdraw at any 
time without penalty. I also understand that the researchers in this study may terminate my 
participation if they feel this to be in my best interest. I understand that if new findings develop 
during the course of this study that may relate to my decision to continue participation, I will be 
informed. I have not given up any of my legal rights or released any individual or institution from 
liability for negligence. 

The research team has adequately answered all the questions I have asked about this study, my 
participation, and the procedures involved. I understand that Carolina Zingale or another member 
of the research team will be available to answer any questions concerning procedures throughout 
this study. If I have questions about this study or need to report any adverse effects from research 
procedures, I will contact Carolina Zingale at 609-485-8629. 
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Discomfort and Risks: 

I understand that I will not be exposed to any known risks or intrusive measurement techniques. I 
agree to immediately report any injury or suspected adverse effect to Carolina Zingale. 

Signature Lines: 

I have read this informed consent form. I understand its contents, and I freely consent to participate 
in this study under the conditions described. I understand that, if I want to, I may have a copy of 
this form. 

 

Participant:________________________________________________ Date:_____________ 

 

Investigator:_______________________________________________ Date:_____________ 

 

Witness:__________________________________________________ Date:_____________ 
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Demographics Questionnaire 
 

Participant #___________ Age _______________ Gender________________ 

Do you have normal color vision? ( Y / N ) 

If no, please explain:_____________________________________________________________ 

Have you ever worked as an Air Traffic Controller? ( Y / N ) 

_____________________________________________________________________________ 

Have you ever worked as a Traffic Manager? ( Y / N ) 

_____________________________________________________________________________ 

Are you or have you ever been a licensed pilot? ( Y / N ) 

If yes, please indicate license and experience___________________________________________ 

What other experience (e.g., R&D) do you have with Air Traffic Control, aircraft piloting, or airline 
operations? 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

What experience (e.g., R&D) do you have with Traffic Flow Management? 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

Have you discussed this experiment with any of your colleagues who have already participated in it? 

YES / NO 

What do you know about the tasks you will be performing? 

______________________________________________________________________________ 
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Modified Complacency Rating Scale 
 
 
INSTRUCTIONS Participant #___________ 

 
 

Read each statement carefully and check one response out of five alternatives in the 
appropriate box that you feel most accurately describes your views or experiences. The responses 
vary on a scale of agreement/disagreement, from “strongly agree” to “strongly disagree”. For 
example: 
 
Statement: Doing research in a library has been made easier by the introduction of 
computerized card cataloging systems. 
 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

Give your answer for each statement and be sure to place your response in the correct place. 
Remember, this is an opinion survey and not a test of intelligence or ability. There are no right or 
wrong answers, only answers that fit your views accurately. Do not skip any question. Time is 
limited. Do you have any questions? 
 

1. Manually sorting through card catalogs is more reliable than computer-aided searches for 
finding items in a library. 

�  �  �  �  � 
 Strongly Agree   Agree  Undecided  Disagree Strongly Disagree 

 
2. If I need to have a tumor in my body removed, I would choose to undergo computer-aided 

surgery using laser technology because computerized surgery is more reliable and safer 
than manual surgery. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
3. People save time by using automatic teller machines (ATMs) rather than a bank teller for 

banking transactions. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
4. I do not trust automated devices such as ATMs and computerized airline reservation 

systems. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 
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5. People who work frequently with automated devices have lower job satisfaction because 
they feel less involved in their job than those who work manually. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
6. I feel safer depositing my money at an ATM than with a human teller. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
7. I have to tape an important TV program for a class assignment. To ensure that the correct 

program is recorded, I would use the automatic programming facility on my DVR rather 
than manual recording. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
8. People whose jobs require them to work with automated systems are lonelier than people 

who do not have to work with such devices. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
9. Automated systems used in modern aircraft, such as the automatic landing system, have 

made air journeys safer. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
10. ATMs provide a safeguard against the inappropriate use of an individual’s bank account 

by dishonest people. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
11. Automated devices used in aviation and banking have made work easier for both 

employees and customers. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
12. I often use automated devices. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 
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13. People who work with automated devices have greater job satisfaction because they feel 
more involved than those who work manually. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
14. Automated devices in medicine save time and money in the diagnosis and treatment of 

disease. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
15. Even though the automatic cruise control in my car is set at a speed below the speed limit, 

I worry when I pass a police radar speed-trap in case the automatic control is not working 
properly. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
16. Bank transactions have become safer with the introduction of computer technology for the 

transfer of funds. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
17. I would rather purchase an item using a computer than have to deal with a sales 

representative on the phone because my order is more likely to be correct using the 
computer. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
18. Work has become more difficult with the increase of automation in aviation and banking. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
19. I do not like to use ATMs because I feel that they are sometimes unreliable. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 

 
20. I think that technology used in medicine, such as CAT scans and ultrasound, help to provide 

very reliable medical diagnosis. 

�  �  �  �  � 
 Strongly Agree   Agree   Undecided  Disagree Strongly Disagree 
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Figure D1. The survey questions presented after each aircraft reroute. N/A was given as an option 

when there was no automation. 

 
Figure D2. The survey questions presented after each scenario was completed. N/A was given as an 

option when there was no automation. 
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Figure D3. The survey questions presented at the conclusion of all ten test scenarios. N/A was given 

as an option when there was no automation. 
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Counterbalancing and Condition Assignment 
 

Instead of randomizing condition orders or systematically varying them in a Latin square or 
similar design, we explicitly specified certain orders for the combinations of independent variables in 
a way that attempted to avoid overly biasing any participant into a certain initial attitude about the 
automation or the task. Such biases might happen, for example, if too many consecutive high- or low-
reliability scenarios or too many high- or low-workload scenarios occurred, especially at the beginning 
of the experimental trials. We determined that high reliability should always be seen first to avoid 
initially “souring” participants on the automation. Counterbalancing or explicitly manipulating the 
order of reliability levels is a potentially interesting avenue, but a complex question beyond the scope 
of this research. For example, the qualitative experience of several high-reliability followed by several 
low-reliability trials, and the resulting attitudes and behaviors, is likely not the direct inverse of 
experiencing these conditions in the reverse order or experiencing alternating reliability levels. 
Counterbalancing these orders would not necessarily have the desired effect of cancelling out order 
effects of other variables, but could interact with other variables in unexpected ways and confound 
the results. Varying the reliability order could make it hard to interpret the results and would become 
a whole separate manipulation/experiment. Therefore, over the course of the conditions containing 
automation, each participant was assigned the same order of reliability levels, one that began with a 
high-reliability scenario and then roughly, but not exactly, alternated between high and low reliability. 

In addition, for any one participant, we always blocked all scenarios of each number of 
recommendations (NREC) condition—one recommendation (four scenarios), three 
recommendations (four scenarios), and no-automation control condition (two scenarios)—and ran 
both/all of the scenarios in each NREC level consecutively to avoid potentially disorienting rapid 
shifts between automation levels. We based all of the above condition ordering strategies on those 
used in past automation trust studies such as Lee and Moray (1992, 1994) and Masalonis (2000). 

To derive condition orders for our 16 participants, we first constructed two initial prototype 
orders, each of which would be assigned to one participant. We built these according to the principles 
outlined above. Eight possible combinations of the within-participants independent variables (IVs) 
existed [Reliability (2) x NREC (2) x Workload (2)], plus two possible presentations of the control 
condition [the two levels of Workload]. Ten combinations of the within-participants IVs resulted and 
are depicted in Table E-1. 
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Table E-1 Ten combinations of the within-participants IVs. 

Rel NREC Work 
HI 3 lo 
LO 3 Lo 
HI 3 Hi 
LO 3 Hi 
HI 1 Lo 
HI 1 Hi 
LO 1 Hi 
LO 1 Lo 
-- -- Lo 
-- -- Hi 

 
We specified two initial prototype condition orders, using the exact order listed in Table E-1. 

The two differ from each other according to the automation algorithm (e.g., X or Y) and scenario type 
(e.g., 1 for eastbound and 2 for westbound) used in the scenario containing a specific combination of 
the other IVs. For example, one of the two initial orders used Algorithm X (scenario type 1) for the 
high-reliability, NREC3, low-workload scenario; the other of the two orders used Algorithm Y 
(scenario type 2) for that scenario. 

The reason for this manipulation is that, although the variable-reliability rules we designed into 
the scenarios were arbitrary, we deemed it necessary to cross these manipulations as fully as possible 
with the meaningful IVs. The goal was to prevent any unanticipated expectations or attitudes 
participants might develop regarding one of the algorithms or one of the scenario types. 

For the eight scenarios in the prototype condition order that contained automation, we 
assigned algorithms X and Y to four scenarios each, crossed as much as possible with the other IVs. 
The reliability level already in place for each scenario would then dictate the scenario type assigned 
based on the variable reliability rules. We did this assignment one way for the first prototype condition 
order and assigned the reverse combinations to the second prototype. For the two control scenarios, 
in the first prototype, we randomly assigned one of the two scenario types (1 or 2) to the high-
workload condition, and the other to the low (last two rows of Table E-1). We assigned the opposite 
workload/scenario type combinations in the second prototype. The four prototype condition orders 
are shown in Table E-2. 
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Table E-2 The resulting four prototypes of conditions. 

Prototype condition order 1  Prototype condition order 2 
Rel NREC Work Algo Type  Rel NREC Work Algo Type 
HI 3 lo X 1  HI 3 lo Y 2 
LO 3 lo X 2  LO 3 lo Y 1 
HI 3 hi Y 2  HI 3 hi X 1 
LO 3 hi Y 1  LO 3 hi X 2 
HI 1 lo Y 2  HI 1 lo X 1 
HI 1 hi X 1  HI 1 hi Y 2 
LO 1 hi X 2  LO 1 hi Y 1 
LO 1 lo Y 1  LO 1 lo X 2 
-- -- hi -- 2  -- -- hi -- 1 
-- -- lo -- 1  -- -- lo -- 2 

 
 

Prototype condition order 3  Prototype condition order 4 
Rel NREC Work Algo Type  Rel NREC Work Algo Type 
HI 3 hi X 1  HI 3 hi Y 2 
LO 3 hi X 2  LO 3 hi Y 1 
HI 3 lo Y 2  HI 3 lo X 1 
LO 3 lo Y 1  LO 3 lo X 2 
HI 1 hi Y 2  HI 1 hi X 1 
HI 1 lo X 1  HI 1 lo Y 2 
LO 1 lo X 2  LO 1 lo Y 1 
LO 1 hi Y 1  LO 1 hi X 2 
-- -- lo -- 2  -- -- lo -- 1 
-- -- hi -- 1  -- -- hi -- 2 

 
To vary the order in which participants ran the NREC conditions, while always keeping all 

scenarios for an NREC together in a block of scenarios, we cloned each of the initial four condition 
orders three additional times so that four versions existed of each of the original four condition orders. 
For each of the four versions of an original condition order, we modified the order in which the 
participants would experience the NREC scenario blocks, using the following possible orders: 

• NREC 3, NREC 1, control (this was the order in the original four) 
• control, NREC 3, NREC 1 
• NREC 1, NREC 3, control 
• control, NREC 1, NREC 3 

Table E-3 summarizes this manipulation. Each column represents one of the original four 
condition orders. For the four orders within a column, the reliability-, workload-, algorithm-, and 
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scenario-type variables are in the same order for the eight automation conditions (as can be seen, the 
eight automation scenarios are always consecutive, the first eight or the last eight). The order of high 
and low workload among the two control scenarios also remains the same within a column. Only the 
order of the NREC variable varies within a column. 

Table E-3 The four potential orders of scenarios. 

NREC order Condition order set number 
3, 1, -- 1 2 3 4 
--, 3, 1 5 6 7 8 
1, 3, -- 9 10 11 12 
--, 1, 3 13 14 15 16 
 
Within a row of the table, the order of the NREC conditions is the same, and the order of 

other conditions varies according to the differences between the four prototype condition orders 
described in the table above—separately for the eight consecutive automation scenarios and the two 
consecutive control scenarios. In each row, the first cell (i.e., condition order 1, 5, 9, 13) presents the 
combinations of the reliability-, workload-, algorithm-, and scenario-type variables in the order listed 
for prototype 1 in the four tables in Table E-2 for the eight automation scenarios, and the workload 
and scenario type variables in the order listed for prototype 1. The second cell of each row (i.e., 2, 6, 
10, 14) presents the combinations in the order used for prototype 2, and so on. 

 
To assign the between-participants variable of SST, we ensured that two participants in each 

column and two in each row would receive SST. We selected the two participants in any column 
assigned to SST so as to have opposite NREC orders. We selected the two participants in any row 
assigned to SST so as to have opposite workload orders within their eight automation scenarios and 
within their two control scenarios, and opposite combinations of algorithm and scenario type for each 
combination of reliability and NREC. Finally, we present the colors used in the route map in Table 
E-4. 

Table E-4 Route table and route map R/G/B values 

 R G B 
Gray 166 166 166 
Light Green 0 255 100 
Dark Green 0 150 0 
Yellow 255 255 0 
Orange 235 160 0 
Red 255 0 0 
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